Laplace

PI\K

Laplace

Copyright © 1996-98 by A Vision Of Paradise

Laplace

COLLABORATORS
TITLE :
Laplace
ACTION NAME DATE SIGNATURE
WRITTEN BY PNK April 18, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Laplace iv

Contents

1 Laplace 1
L1 SYNtax . . . o o e e e e e e 1
1.2 comments e e e e e e 2
1.3 @XPIressiONs v v v i e e e e e e e 2
14 references L. e e 3
LS types . . o e 6
1.6 type-invalid e 8
1.7 type-identifier L e e e e e e e 8
1.8 type-object e e e 8
1.9 type-number e 9
1.10 type-real L e 10
LT type-InteZer o o i e e e e e e e e e e e e e e e e e 10
112 type-posinteger o i e e e e e e e e e e e e e 10
113 type-neginteger e e e e 11
1.14 type-complex e e 11
LIS type-tensor e e e e e e e e e e 11
116 type-VeCtor e e e 12
LI7 type-matrixX oo v v e e e e e e e e e e e e e e e e e 12
L8 type-array o o e e e e e e e e e e e e e 13
1.19 type-boolean L e e 13
1.20 type-string o o e e e e 14
1.21 type-equation e e e e e e e 14
122 type-Tange o o vt i e e e e e e e e e e e e e e e e e e 15
123 100PS . . o o o e e 15
1.24 conditionals L e e 16
125 procedures o i e e e e e e e e e e 16
126 OPLONS o o o o e e e e e e e e e e 17

Laplace

1/18

Chapter 1

Laplace

1.1 syntax

- Laplace Manual ———==————————————m oo —
Expression syntax -

6) Expression syntax
Besides the usual evaluation of expression, Laplace now offers some pro-—
gramming facilities. The syntax is gquite similar to the C language, although

there are some differences.

Expressions are separated by semicolons ;. Expressions can be enclosed in
curly braces {, }, e.g. to have more than one expression in a while—-loop.

Compared to C, Laplace works a bit functional , this means almost every

statement gives you a result, even without an assignment, result(...) or some-
thing similar. The result of an expression block is the last expression. You
can also abandon the execution of a block using the break()-function; the op-

tional argument is the result of the block.
> { pi; 2+3; 31 }

> => 3i

> { pi; break (2+3); 3i }

> => 5

*
Comments

*

Expressions
*
References

Types

Loops

Laplace

2/18

*

Procedures
Options

—— © by P!\K -

1.2 comments

- Laplace Manual —-————————————————————"————————————————————————————— Comments -
6.1) Comments

Laplace uses C like comments. Everything enclosed in /* and %/ is simply
ignored. Nesting is not allowed, as you know it from any C compiler.

C++ style comments are also recognized. After // the rest of the line 1is
ignored (note that this is the only case where Laplace distinguishes between
spaces and line breaks).

—— © by P!\K -

1.3 expressions

- Laplace Manual -——

Expressions -
6.2) Expressions

Expressions are entered in a usual manner, e.g.
> 142/3%x(4-2) <return>

Guess what’s the result...
More formally, an correct expression is:

an object (see

types

) or
a reference (see

references

) or
an built-in function (see functions) or
expression binary_operator expression
unary_operator expression
expression relation expression

There are the following binary operators:

Laplace

3/18

+ - add - - substrac

* - multiply / - divide

A - power of S\times$, cross - vector product
||, or - logical or '1l, nor - logical nor

&&, and - logical and '&&, nand - logical nand

A - logical xor union — set union

intersect - set intersect setminus - set minus

Note: the vector product \times is not a usual x, and can be entered by alt x <

Further more, here are the unary operators:
- — negative !, not - logical not

A relations always results in a boolean value (TRUE or FALSE). This is the
list of all relations:

== - equal != - not equal
< - less than <= - less or equal
> - greater than >= - greater or equal

—— © by P!\K -

1.4 references

- Laplace Manual —-—————-———-———————————————————————————————————————
References -

6.3) References

If you want to wuse an result later or Jjust define a wvariable, write
name = expression . This creates an objects that can be referenced by it’s
name in later(!) entries. If you reference to an object, Laplace searches from
the actual entry backwards, thereby you may define an object several times,
but only the latest version is used. E.g.

[1] a=1/2 <return>
[2] 2*a <return>
=> gets a from [1]
[3] a=a+l <return>
=> a on the right side references to the definition in [1]
=> and creates a new object called a to be referenced below
[4] a <return>
=> gets a from [3]

V V V V V V VYV

If you move back to [2], you still get the same result, because the new a
is defined below and cannot be reference from [2].

You may overwrite built-in functions like sin () , exp () etc. and the in-
ternal constants e and pi . On the other hand, the following keywords are
forbidden: if, else, while, for and all

options

(names starting with $).

Laplace 4/18

If Laplace encounters an object name that was not defined earlier, a con-
stant will be automatically created:

> f(x) = x"2 <return>
> f(a) <return>
> => a2

This is the same as
f(x) = x*2 <return>
const a <return>
f(a) <return>

=> a2

vV V V V

This work only for number constants. If you require e.g. a constant vector
object, you have to use the const keyword to declare it.

Generally you should always declare constants with const, otherwise you are
in danger that the reference has already been defined (e.g. in a library file)
and you get a type error, look at this:

> a=[1,2]

> ...

> [thousands of lines...]

> ..

> f(x)=x"2

> f(a)

> => error: Not defined to vectors.
Conventions

There are some special conventions for object names. Valid characters are
A...2, 0, A, U, a...z, 0o, & 1, 0...9, @, S, S, ', , _. You may not use a
number as the first character.

There are two special characters which may be used: (tilde) and _
(underscore). _ as the first character will create a line above the name,
which is often used in mathematics. Inside the name _ will create an index -
characters after _ will Dbe used as the index at the bottom of the name.
works similar, but creates an index at the top of the name. You can use Dboth

kinds of indeces together. E.g. _a, a_l, a 1 or everything at once _a 2_1.

Starting with version 0.3 Laplace support the usage of Greek symbols. If
the name or an index matches the name of a Greek letter, then this letter is
used to display the wvariable. Number may follow the letter name. E.g.
alphal_beta. A name in lower case represents a small Greek letter; if the
first character of the name 1is uppercase, then you get an big Greek letter.
All supported names are

alpha Alpha beta Beta chi Ch
delta Delta epsilon Epsilon eta Eta
gamma Gamma jota Jota kappa Kappa
lambda Lambda my My ny Ny
omega Omega omikron Omikron phi Phi
pi Pi psi Psi rho Rho
sigma Sigma tau Tau theta Theta

x1i Xi ypsilon Ypsilon zeta Zeta

Laplace 5/18

This list can be configured (see preferences). You can add your own symbols
or Jjust use another font for greek letters.

An astonishing new feature is the possibility to use the result of any ex-—
pression as the reference name or as a part of it. If you enclose an expres-—
sion in reverse apostrophes ', it will be evaluated and the result replaces
the expression. The only limitation is, that the result must be

a string that contains only characters that are allowed for identifiers.
a positive, integer

empty. In that case there will be simply nothing inserted.

Here is an example of it:

> a = 2;
> B_ta' = 1;
> => B_2 =1
> a = '’alpha’’;
> B~‘a'_‘2+43' = 1;
> => B~alpha_5 =1
> a 0 =12; a_1l = 5; a_2 = 16;
> for (1 =0, 1 <3, i +=1) result(a_‘i");
> => 12
> => 5
> => 16
As you can see, you can use an arbitrary number of subexpression in each
identifier.

Definition types
There are three difference kinds of definitions:

Variables - When vyou reference a variable, it’s contents will be in-
serted. Variable are defined using name = expression . E.g.

> a=3 <return>

> a+l <return>

> => 4

Parameters - A reference to a parameter will not be evaluated, it will
remain in the result. Use name := expression to create a parameter. If
you want to get the final result use the xparm() function. E.g.

> a:=3 <return>

> 2% (a+2) <return>

> => 2*xa+4
> xparm(2* (at+t2)) <return>
> => 10

Constants have no value, so they won’t be -evaluate, even with the
xparm () function. They are defined using the const keyword. E.g.

> const a <return>

> 2x (a+2) <return>

> => 2xa+4
> xparm(2+* (a+2)) <return>
> => 2xa+4

Laplace 6/18

You can also define functions. Just enter a argument list embedded in
bracket after the object name, e.g.
> f(x)=x"3 <return>
> g(x,y) :=sqrt (x"2+y"2) <return>

When referencing a function you have to specify the arguments to be in-
serted into the function’s expression, e.g.
> £ (3) <return>
> => 27
> const a <return>
> f(a+l) <return>
> => (a+1)"3

It is also possible to omit the arguments; if you do so, Laplace will in-
sert the arguments as they were defined, e.g.

> f(x,y) = x"2 + y*2 <return>
> £’ (x,y) = derive(f(x,vy),x) <return>
> f’ (x,y) = derive(f,x) <return>

Note that the last two lines are the same, because f will be expanded to
f(x,y)

Quick arithmetics
Similar to the C language Laplace knows some abbreviations for often used
expression. Instead of writing

> a =a + 2;

you should use
> a += 2;

This is faster than the first form, because Laplace can make some internal
optimizations. This works for the following binary operators:

X += a <=> X = x + a
X —= a <=> X = X — a
X *= a <=> X = X % a
x /= a <=> x =x / a
X ||= a <=> X =X || a
X Oor= a <=> X =X || a
x &&= a <=> X = X && a
X and= a <=> X = X && a

—— © by PI\K -

6.4) Types

FEach expression has a type. Laplace supports a complex hierarchy of types:

Laplace 7/18

invalid
identifier
object
numbér
real
integer
posinteger
neginteger
complex
tensor
vector
matrix
array
boolean
string
equation
interval
You can query the type of an object with the typeof () function. ¢«
It returns

a string with the object’s type. To check, if an object is of a given type or
a subclass of that type, use issubtype(), which returns boolean. The vector

[1,2] for example has a type of vector, which is a subclass of tensor and ob-
ject.

> v = [1,2]

> typeof (v)

> => "vector"

> issubtype (v, "vector")
> => TRUE

> issubtype (v, "tensor")
> => TRUE

> issubtype (v, "object")
> => TRUE

> issubtype (v, "array")
> => FALSE

A variable declaration is a type name followed by the variable’s name. Ad-
ditionally to the type name, you can set some special attributes:

const - A constant object of the given type is created. You cannot as-
sign a value to a constant.

Laplace 8/18

numeric - not implemented.

Laplace recognizes a declaration, when it encounters a type name or one of
the attributes. If you use an attribute, you may omit the type name, which is
number by default. Without attributes, you must give the type name, otherwise
the declaration won’t be recognized.
> number aj;
> a = 1;
> const vector aj;
> const aj;

1.6 type-invalid

- Laplace Manual ————————————"—"————————————— type 'invalid’ -
Type invalid
invalid is not a real type, but is assigned to every object that doesn’t

have a valid type. For example det (2) has the type invalid, because you can
calculate the determinant only for matrices.

—— © by PI\K -

1.7 type-identifier

- Laplace Manual - ————-—-—-——"—"——————————————————————————— type ’'identifier’ -
Type identifier

Currently it doesn’t make sense to declare an object of type identifier.
But you might get an error message telling you, that a function expected an
object of type identifier as an argument, e.g. the derive() function, if vyou
only give one argument. This means that you have to pass the name of a previ-
ously declared object as the argument.
> derive (x"2)

> => ERROR
> f(x) = x"2
> derive (f)

77 © by P!\K -

1.8 type-object

Laplace

9/18

- Laplace Manual —————————————————————— type ’'object’ -
Type object

This is the base type for all wusually used types. An expression is either
invalid or has a sub type of object.

—— © by P!\K -

1.9 type-number

- Laplace Manual ———————————————————— type ’'number’ -
Type number
These are just numbers as we all know them (or do we know them all?!).

Numbers can be entered in exponential style, which is
{+/-/<nothing>}ddddd[.ddddd] [e{+/-/<nothing>}dddd] .
Ufff, but it’s quite easy;-) to enter e.g. 6.626 x 10"(-34) write
6.626e-34. The (whole) number after e is Jjust the exponent. Don’t use
brackets, if the exponent is negative!

Laplace supports complex numbers. To enter a complex number, simply write
something like 1 + 2i . But they are not fully implemented, e.g.
error-distribution doesn’t work correctly when you have complex values in your
expression and not all functions work with complex arguments.

As long as you enter only whole numbers, Laplace tries to use fractions, so
enter 1/2 instead of 0.5 (in this simple case Laplace converts 0.5 to 1/2 it-
self, but this may not always work). This way you can enter things like 1/7
exactly, and you won’t get result which are almost exact zero, when it should
be exact ;-)

A fantastic new feature of Laplace is the direct support of Gaussian
error—-distribution. Now it is possible to enter values with their standard er-
ror, do what ever calculations vyou have to do, and then get the result with
the correct error value! This is very useful, if you are calculating with re-
sult of some measurements, like I did during my physical practical.

For example, you want to measure the earth acceleration by measuring the
falling time of a ball. You measured the falling height to 1.119 meters with a
precision of one millimeter and the time to 0.50 seconds with a precision of
1/50 second. Now simply enter:
> t=0.50\ensuremath{\pm}0.02
> h=1.119\ensuremath{\pm}0.001
> g=2*s/h"2

and that’s all!! (Next time you should do it more precisely..)
The \ensuremath{\pm} can be entered Dby alt-y (on the German keyboard)

alt-z (on
others) .

or

Laplace 10/18

But you should be aware, that in some cases you might get wrong result, be-

cause l1l0\ensuremath{\pm}1*x10\ensuremath{\pm}1 is not the same as 10\ensuremath{\ <«
pm}l ~ 2 . So, if the same value is wused

at different places in a formula, it 1is evaluated as if they had independent

error ranges!

The best way to avoid this, is declaring all values with errors as parame-—
ters, construct your (possibly big) formula and simplify it, so that every pa-
rameter occurs only a single time, e.g.:

> x := 10\ensuremath{\pm}1

> y := 12\ensuremath{\pm}2

> a = 3xx"2xy"3

> b = 5xx"3xy"2

> result = a/b

> xparm(result)

If you on the other hand have something like this:

> x := 10\ensuremath{\pm}1

> result = x/(x+1)

you’ll get a wrong error value and there is no way to avoid it, sorry.

—— © by PI\K -

1.10 type-real

- Laplace Manual —-—— type ’'real’ -
Type real

real is a sub-type of number, specifying numbers without imaginary part,
e.g. 5.34

—— © by PI\K -
1.11 type-integer
- Laplace Manual —— type ’'integer’ -
Type integer

integer is a sub-type of real, specifying real, whole numbers, e.g. -3
—— © by P!\K -

1.12 type-posinteger

Laplace

11/18

- Laplace Manual ——— type ’'posinteger’ -
Type posinteger
posinteger is a sub-type of integer, specifying real, whole numbers Dbigger

than zero, e.g. 7

—— © by P!\K -

1.13 type-neginteger
- Laplace Manual ——— type ’'neginteger’ -
Type neginteger

neginteger is a sub-type of integer, specifying real, whole numbers smaller
than zero, e.g. -9

—— © by P!\K -

1.14 type-complex

- Laplace Manual —————————————————————— - —————— type ’'complex’ -
Type complex
complex is a sub-type of number, specifying numbers without real part, e.g.

3.51

—— © by P!\K -

1.15 type-tensor

- Laplace Manual —————————————————————— type ’'tensor’ -
Type tensor

tensor is the base type for vectors and matrices. A tensor is a orthogonal

arrangement of numbers of n dimensions. n = 1 is a linear arrangement and
therefore a vector. n = 2 specifies a square arragement of numbers and is a
matrix.

To access single members of a tensor, write the index in square Dbrackets
right after the tensor Tla,b,...] . The index must have exactly n components,
and numbering of the members starts at 1

Laplace

12/18

You can also access sub-tensors by using intervals in the index. T[2..4]
constructs a one dimensinal tensor from the one dimensional tensor T with
three members 2, 3, 4 . T[2..4,2] is again a one dimensional tensor, this
time constructed from a two dimension tensor T taking the three members
(2,21, [3,2], [4,2] . T[2..4,1..2] creates a two dimensional tensor with the
members [2,1]1, [3,11, [4,11, [2,2]1, I[3,21, [4,2]

—— © by PI!\K -

1.16 type-vector

- Laplace Manual —-—— type ’vector’ -
Type vector

A vector is a tuple of numbers. To create the vector (2,4,1) enter [2,4,1].
Any expression can be (of course) a component of a vector.

You can add and multiply (scalar) two vectors, or multiply a number or ma-
trix with a vector (in this order, not vectorxnumber !). You get the vector

product of two 3-dimensional vector by typing vector \times vector. The \times <

is not an
ordinary x, but can be entered by alt-x (on the German keyboard and probably
all others, too).

To access the n —-th member of a vector v (which can be any expression that
evaluates into a vector), append the index in square brackets v[n] . The first
member has the index one.

You can also use an interval a..b as the index, extracting a vector with
the members a to b . -infty as the lower limit is replaced by 1 , while

infty as the upper limit is replaced by the dimension of the vector. This way
v[2..] will replicate the vector v without the first element.

—— © by PI\K -

1.17 type-matrix

- Laplace Manual --———-—-—"——————————————————————————————————— type 'matrix’ -
Type matrix

The matrix with the row vectors (1,2,3), (4,5,6) and (7,8,9) can be created
with [1,2,3;4,5,6;7,8,9]. If vyou have column vector in mind, use

[1,4,7;2,5,8;3,6,9]! instead (append an exclamation mark).

You can add and multiply two matrices, or multiply a number and a matrix
(in this order, not matrix*number !).

To access the element in the n -th row and m -th column of a matrix M

Laplace 13/18

(which can be any expression that evaluates into a matrix), append the indeces
in square brackets M[n,m] . The first row/column has the index one.

By using an interval in the index, you can access row or column vectors of
the matrix: M[n,..] extracts the n -th row into a vector, while M[..,m] com—
poses a vector out of the m —-th column. The resulting vectors are always col-
umn vectors.

With two intervals you can extract a sub-matrix, e.g. to get the matrix N
from a matrix M , leaving out the first row and the first column, write
N = M[2..,2..]

—— © by PI\K -

1.18 type-array

- Laplace Manual —— type ’array’ -
Type array
To create a array use the array() command.

A array 1is a collection of objects of the any type. Members can occur mul-
tiple times in an array.

If you calculate with array, all operations (except those affecting the ar-
ray directly) are applied to all members of the array, e.g.
> A=array(l,2,3) <return>
> A+2 <return>
> => {3,4,5}

The function count () returns the number of members in an array. To access
the n —-th member of an array A (which can be any expression, which evaluates
to an array), write the index in square brackets right after the array: A[n]
The first member has the index 1. If vyou use an interval a..b as the index,
this creates a new array with the members, taking the members a to b from

A=array (5,7,12,7) <return>
A[l] <return>
=> 5
(2%A) [2] <return>
=> 14
A[2..3] <return>
=> [7,12]

V V.V V V V.V

—— © by PI\K -

1.19 type-boolean

Laplace 14/18

- Laplace Manual —————————————————————— - —————— type ’'boolean’ -
Type boolean
A boolean object can only contain the two values TRUE and FALSE.

Possible operation for boolean objects are: && (and), || (or), !&& (nand) ,
'l (nor), " (xor) and ! (not).

> a=TRUE
> b=FALSE

> c=TRUE
> a && (b || !'c)

—— © by PI\K -

1.20 type-string

- Laplace Manual ———————————————————— -~ — type ’'string’ -
Type string

Strings are surrounded by double quotes ".

Similar to strings in C, you can use the backslash @{UB}\ as an escape <

character
to insert special characters to a string:

\" - add a double quote (otherwise you’d get problems with the sur-
rounding quotes!).

\n - add a new line (ASCII code 10).

\\ - the backslash itself.

To concatenate two strings, simply add them:
> " Hi " + " there!"
> => " Hi there!"

—— © by PI\K -

1.21 type-equation

- Laplace Manual ————————————————————————— - —————————— type ’'equation’ -
Type equation

An equation is created by the =? operator.
> E= 2%x+4 =? 0 <return>

To access the left or right hand side of a given equation, use the func-

Laplace

15/18

tions lhs () or rhs{().
> lhs (E) <return>

> => 2xx+4

> rhs (E) <return>

>

You can of course calculate with equations. The operations will be applied
on both side of the equation.
> E= 2xx+4 =2 0

> E= E-4
> E= E/2

You can also apply functions line sin(), exp()... on equations, e.g.
> E= In(x) =2 1l2*xe <return>

> E=exp(E) <return>

1.22 type-range

- Laplace Manual ——— type ’interval’ -
Type interval

An interval is a range of values, starting at a , ending at b , and is de-
fined by a..b . a and b can usually be any number, but there are restric-
tions depending on the context the interval is used for. In most cases, a and
b have to be real numbers with a < b.

You may omit the lower and/or upper 1limit of the range, which is than re-
placed by —-infty respectively infty

—— © by PI\K -
1.23 loops

- Laplace Manual —-—————-————————————————————— -~~~ ———————————— Loops -
6.5) Loops

In contrast to most other statements, the loops won’t return a result.

You can always interrupt the loop using the break () function.
the while-statement

The statement or the block of statements following the while keyword is ex-—
ecuted as long as the argument evaluates to the boolean TRUE.

>a = 0; b =0;
> while (a < 10)

Laplace 16/18

a +
b +=

1;
irandom (10) ;

vV V V V

the for-statement

The for-loop is very close to the C for-loop: the first argument is evalu-
ated before the loop is started, the second on is a condition that is checked
at the beginning of the loop and the third argument is evaluated at the end of
the loop.
> b = 0;
> for (a = 0; a < 10; a += 1)
> b += irandom(10);

—— © by P!\K -

1.24 conditionals

- Laplace Manual ——————————————————— Conditionals -
6.6) Conditionals

The if-condition works exactly the way you expect it to do: if the condi-
tion is TRUE the first statement or statement block is executed, otherwise the
else-statement is executed, if there is one.
> 1if (a > 5)

> A

> b += 10;

> c —= sin(b);
>}

> else

> b -= 10;

—— © by PI\K -

1.25 procedures

- Laplace Manual —-——————-——— Procedures -
6.7) Procedures
The ability to create procedures is the most powerful invention of V0.8.

The syntax for creating a procedure is now very similar to the syntax of
the C language: The return type of the procedure, followed by an identifier
with optional arguments and then a statement block:
> number foobar (number a)
> |
> if (a>0)

Laplace 17/18

return(-1);
else
return(l);

vV V V V

As you can see, the return()-functions, aborts the procedure and returns
the optional argument as the result of the procedure. If you omit the return/()
command, and the procedure reaches the end of the statement block, the result
of the last expression is returned.

—— © by P!\K -

1.26 options

- Laplace Manual ——————————————————— - ————— Options -
6.8) Options
There are some options to influence to calculation or presentation of ex-

pressions. They can be used like any other reference, but they all start with
a $ (dollar sign). You can assign a new value to it, just by typing e.g.

> $dispprec = 6
> a = 3
> Sdispprec = 2+*a

or you can query the current value:
> a = S$dispprec
> => 6

As always, Laplace searches backwards until it finds an option, this way
setting an option will not influence the lines above. If no explicit assign-
ment has been done, the default value is used.

These are the keyword:

Sconvprec - Default: 14 - Possible wvalue: 1..20. Laplace tries to con-
vert floatpoints into fractions whenever possible. But the floatpoint
routines are not too exact, so there might be an small difference to the
correct value (e.g. 1.2000000000000001 when it should be 1.2). If the
difference is smaller than the specified precision (precision 12 means
10~ (-12)), Laplace assumes the value as a fraction and converts it (in
this case to 6/5). This is not applied to value near zero, so 1le-30
won’t be converted to 0.

$dispexp - Default: 6 - Possible value: 1..12. Select number of digits
to be displayed before switching to exponential display.

Sdispprec — Default: 6 — Possible value: 1..15. Select maximum number of
decimal digits to be displayed.

Siref - Default: TRUE - Possible value: TRUE, FALSE. The usage of the
single letter i as a reference name can be somehow confusing. If you are

Laplace

18/18

VVVVVVVVVVVVVYVVYVYV

working with complex numbers, vyou probably mean i as sqgrt(-1), but in
other cases you use 1 as an index variable or something like that.

If you set $iref to TRUE, i always stands for an reference, and you
have to enter 1i to get the complex number. Otherwise 1 means 11 and
there is no way to enter a reference called i. (Actually there is one:
*"imY, but this is a quite difficult way to enter a single letter...)

$Ssimplify - Default: TRUE - Possible value: TRUE, FALSE. Enable/Disable
simplification pass. Without simplification, the calculation will be
faster, but the result might look quite ugly.

Stranspose - Default: FALSE - Possible value: TRUE, FALSE. A matrix 1is
usually entered ordered by rows, similar to programs like MAPLE or MAT-
LAB. If you prefer column vectors, set this option to TRUE.

This option can be overwritten be entering [..]~ (always use
row-order) or [..]! (always use column-order).
Suseerror — Default: TRUE - Possible value: TRUE, FALSE. If set to

FALSE, Laplace will not use and display error ranges.

Susefloat - Default: FALSE - Possible value: TRUE, FALSE. If set to
TRUE, Laplace will always use floatpoints and never converts them to
fractions.

For example:
Susefloat = FALSE
sin(2)

=> sin (2)
Susefloat = TRUE
Sdispprec = 5
sin(2)

=> 0.9093
Sdispprec = 8
sin(2)

=> 0.90929743
a=12000.3
Sdispexp = 3
a

=> 1.20003+x10" 4
Sdispexp = 6
a

=> 12000.3

—— © by PI\K -

	Laplace
	syntax
	comments
	expressions
	references
	types
	type-invalid
	type-identifier
	type-object
	type-number
	type-real
	type-integer
	type-posinteger
	type-neginteger
	type-complex
	type-tensor
	type-vector
	type-matrix
	type-array
	type-boolean
	type-string
	type-equation
	type-range
	loops
	conditionals
	procedures
	options

